A Low-Cost Mechanically-Steered Weather Radar Concept

18 October 2018

Stefano Turso , Thomas Bertuch , Peter Knott

O Silke Trömel, Clemens Simmer

 Fraunhofer Institute for High Frequency Physics and Radar Techniques (FHR) *Fraunhofer Straße, 20 53343 Wachtberg*

> Hailstorms, rainstorms, **o** Meteorological Institute University of Bonn

> > *Auf dem Hügel, 20 53121 Bonn*

> > > Germany

Development of a cost-effective Doppler dual-polarized radar node for a short-range weather radar network

Flash-floods, tornadoes, forest fires

Hailstorms, rainstorms, snow

Nowadays, about 70% of the troposphere below 1 km cannot be observed by radar means.

- \blacksquare Being limited by the earth curvature, traditional long range weather radars (up to about 200 Km range) are unable to provide coverage of the lower part of the atmosphere.
- Excerpted from WakeNet-Europe 2013, by Mr. McLaughlin (UMASS) and Mr. Drake (Raytheon)

"There is insufficient knowledge about what is actually happening (or is likely to happen) at the Earth's surface where people live", National Academy of Sciences,1998

Nowadays, about 70% of the troposphere below 1 km cannot be observed by radar means.

- \blacksquare This yields inherent difficulties in the
	- understanding,
	- prediction
	- and timely reaction

to weather phenomena like intense convective storms and tornadoes which develops up to a height of about 3 Km in the troposphere.

"There is insufficient knowledge about what is actually happening (or is likely to happen) at the Earth's surface where people live", National Academy of Sciences,1998

Long-range weather radars suffer from orographic shielding, low space resolution and high revisit time

S and C-band radar systems are known to suffer from shielding effects preventing to sound orographically complex areas like Alpine valleys and urban areas.

Tropical Storm Odile Flash Flooding in Southeast Arizona, Sept. 2014

Excerpted from WakeNet-Europe 2013, by Mr. McLaughlin and Mr. Drake

Long-range weather radars suffer from orographic shielding, low space resolution and high revisit time

Supercell comparison (left: X-band CASA, right: S-band NEXRAD) Coarse resolution and high revisit time are other known limitations of a sounding approach based on a limited number of long range units, overall leading to operational maps of about 1 Km³ radar bins with a typical update time of 5 minutes.

Excerpted from WakeNet-Europe 2013, by Mr. McLaughlin and Mr. Drake

To overcome these limitations, the development of a network of short-range X-band dual-polarized Doppler weather radars is proposed

A networked approach generates high resolution composite maps of short-range units with a typical refresh rate of one minute

CASA X-band AESA experimental network *Excerpted from WakeNet-Europe 2013, by Mr. McLaughlin and Mr. Drake*

To overcome these limitations, the development of a network of short-range X-band dual-polarized Doppler weather radars is proposed

A networked approach generates high resolution composite maps of short-range units with a typical refresh rate of one minute and improve monitoring of the lower troposphere.

CASA X-band AESA experimental network *Excerpted from WakeNet-Europe 2013, by Mr. McLaughlin and Mr. Drake*

Fraunhofer FHR

Excellence in radar research since 1957

About 300 employees, 24M€ budget Part of Fraunhofer Gesellschaft since 2009

Fraunhofer FHR business units

The Fraunhofer-Gesellschaft at a Glance

The Fraunhofer-Gesellschaft undertakes applied research of direct utility to private and public enterprise and of wide benefit to society.

Overview

- **Concept design**
- **Enabling technologies**
- **Manufacturing**
- System design
- **Feasibility**
- **Summary**

Mechanical assembly

Concept rendering mock-up, front Flat aperture

Flat aperture

- \blacksquare 0.5 m² array panel area
- Four panels framed as a flat aperture
- Antenna aperture connected to a rotor by an arm, mechanically adjustable elevation tilts (up to 11° in 1° step)
- Receiver over-elevation
- Distributed power generation

Mechanical assembly

Concept rendering mock-up, back Flat aperture

Flat aperture

- \blacksquare 0.5 m² array panel area
- Four panels framed as a flat aperture
- Antenna aperture connected to a rotor by an arm, mechanically adjustable elevation tilts (up to 11° in 1° step)
- Receiver over-elevation
- Distributed power generation

Back-end

Back-end transmitter and receiver chains including on-board digital processing

Front-end

Array

- Based on an integrated T/R front-end MMIC plus polarization switch and sub-array radiating column.
- Each Medium Power Front End (MPFE) feeds a linear sub-array of 32 patches arranged as a column.
- 64 radiating columns for a total radiating surface of about 960 x 480 mm.
- Modular design based on 4 panels.
- Connected to the Tx and Rx chains via a common feeding network plus T/R switch.

Front-end overview Panel-based modular design

Front-end

Patch sub-array column with polarization switch

Dual polisub-array column with polarization switch

- horizontal and vertical ports of each patch subarray fed by a common MPFE plus polarization switch on the PCB back-side.
- Allows for alternate polarization modes in transmission and reception (" \triangle Iternate Transmit Alternate Receive" mode).
- Stacked patch design for improved bandwidth exceeding 300 MHz.
- Low insertion loss switch (e.g. Analog Devices HMC1118).

Front-end, column sub-array

Column sub-array **Aperture feeding detail**

Mechanical assembly

FIBROTOR EM.NC.15, FIBRO GmbH Rotor

■ Rotor

- **Line**
- **Horizontal working position**
- 250 kgm² moment of inertia (max)
- \blacksquare 5.5 rpm (max)
- \Box Ø 410 mm, tabletop
- Absolute encoder
- Integrated slip-ring
- Up to 200 kg load
- Remotely controllable
- Abound 15 K\$ unitary cost

Back-end, receiver

Analog Devices ADL5355 Balanced mixer

Balanced Mixer

- Integrated RF balun
- Integrated differential IF amplifier
- 1200.2500 MHz RF
- \Box 30.450 MHz IF
- **Suitable for early implementation of** differential signaling.

Back-end, receiver

Analog Devices ADL5565 Differential amplifier

Differential amplifier

- \blacksquare High dynamic range
- Differential input to differential output
- 3 dB bandwidth of 6 GHz
- \blacksquare 2 ns settling time
- 11 V/ns slew rate

Differential ADC driver

Back-end, receiver

■ Analog-to-Digital converter

- Single channel differential input
- \blacksquare 16-bit, 250 MSps
- 90 dBFS SFDR to 300 MHz
- 60 fs rms jitter
- High dynamic range differential IF sampler

Analog Devices AD9467 Analog-to-Digital converter

Back-end, transmitter

Direct digital synthesizer

- Integrated 14-bit DAC
- 1 Gbps sample rate
- 400 MHz analog bandwidth
- Digitally defined frequency sweeps
- Frequency agile

Digital waveform generation

Analog Devices AD9910 Direct digital synthesizer

Back-end, signal and data processing

Xilinx Zynq UltraScale+ multiprocessor system-on-chip (MPSoC) Hardware back-end definition

- Availability of FPGA logic blocks and processing cores into the same chipset yields fundamental advantages:
	- Hardware Defined Radio (HDR)
	- Over-the-Air (OTA) algorithms updates and parameters fine tuning
	- Accurate balancing of signal processing and computational tasks
	- Sufficient on-board processing power for raw processing and data reduction.

User programmable platform

Back-end, signal and data processing

Xilinx Zynq UltraScale+ RFSoC Family integrating the RF signal chain for 5G wireless and Radar. Sixteen 2GSPS 12-bit ADCs and sixteen 6.4GSPS 14-bit DACs on-chip.

All Programmable RFSoCs monolithically integrate RF data converters for up to 50-75 percent system power and footprint reduction.

Front-end

United Monolithic Semiconductors External conductions of the conductions of the conductions of the conduction o

Legacy COTS X-band TRMs relying on external components

- The development of X-band weather radars has been carried on by research centers and some commercial entities for more than 20 years.
- However, the <u>lack of a sufficient scale of</u> integration at a core chip level prevented so far the development of effective solutions.

Front-end

New generation of highlyintegrated low-cost TRMs

 Newly available low-cost TRMs integrating complete AESA functionalities on-chip offer for the first time sufficient hardware infrastructure for the development of lowcost dual-pol Doppler X-band weather radars based on AESA technology

Bi-dimensional AESA concept design (courtesy of Anokiwave) New highly-integrated TRMs

Front-end

Anokiwave AWMF-0106 "Medium Power Front-End" New highly-integrated TRMs

- Anokiwave AWMF-0106 "Medium Power Front End"
- X-band TRM offering integrated onchip
	- **power amplifier**
	- low noise amplifier
	- Rx passive limiter
	- and T/R SPDT switch.
- The unit is EAR99 / ITAR free and packaged as a compact 7x7 mm² PQFN.

Front-end, MPFE

MPFE PCB layout Top layer

MPFE PCB layout DC supply tracks

Front-end, Quad-Core

Quad-Core PCB layout Top layer

Quad-Core PCB layout Bottom layer

Front-end, Quad-Core

Quad-Core PCB layout Top layer rendering

Quad-Core PCB layout Bottom layer rendering

Front-end, Quad-Core

Quad-Core PCB Top layer

Quad-Core PCB Bottom layer

Front-end, MPFE

MPFE PCB layout Top layer rendering

MPFE PCB layout Bottom layer rendering

Front-end, MPFE

MPFE PCB Top layer

MPFE PCB Bottom layer

Front-end, full assembly

Full assembly Top layer

Full assembly Bottom layer

Front-end, MPFE

MPFE and external components Top layer rendering

Required board surface Top layer rendering

Front-end, MPFE

MPFE and external components Top layer

Required board surface Top layer

Front-end, Quad-core controller

Top layer

Quad-core and external components

Required board surface Bottom layer

© Fraunhofer FHR

Front-end, MPFE

Receive mode noise figure vs. frequency ode noise rigure vs. irequency
(3.3 dB @ 9.0 GHz) New highly-integrated TRMs

- Anokiwave AWMF-0106 "Medium Power Front End"
- \blacksquare In receive mode, the unit features
	- a noise figure as low as 3.3 dB
	- 23 dB linear gain
	- \blacksquare self-biased LNA
	- \blacksquare integrated passive limiter.

Front-end, MPFE

Anokiwave AWMF-0106 "Medium Power Front End"

In transmit mode, the unit features

 \blacksquare <u>up to 5 W HPA</u>

- 29 dB linear gain
- active PA bias & control
- \blacksquare integrated Tx power detector.

Saturated Tx power vs. frequency over temperature

New highly-integrated TRMs

Front-end, MPFE

Small signal Tx gain vs. frequency over temperature

- Anokiwave AWMF-0106 "Medium Power Front End"
- In transmit mode, the unit features
	- \blacksquare up to 5 W HPA
	- **29 dB linear gain**
	- active PA bias & control
	- \blacksquare integrated Tx power detector.

New highly-integrated TRMs

System parameters

A 0.5 m² array of 64x32 elements radiating about 250 W will be sufficient to detect a rainfall rate of 1 mm/h at 40 km range.

- \blacksquare 1/4 KW radiated power
- 5 us chirp, 6 MHz bandwidth
- 128 scans per each elevation
- Staggered PRF of 500 us and 333 us leading to a maximum Doppler speed of 75 m/s
- 25 dBZ sensitivity floor (~1 mm/h, Continental Europe)

System parameters

A 0.5 m² array of 64x32 elements radiating about 250 W will be sufficient to detect a rainfall rate of 1 mm/h at 40 km range.

- \blacksquare 1/4 KW radiated power
- 5 us chirp, 6 MHz bandwidth
- 128 scans per each elevation
- Staggered PRF of 500 us and 333 us leading to a maximum Doppler speed of 75 m/s
- 25 dBZ sensitivity floor
	- (~1 mm/h, Continental Europe)

Power budget

Receiver Operating Characteristic (Swerling2 model in red) PoD @ PFA=1e-4, Swerling2 model

Elevation steering

■ Concept implementation of frequency beam steering via serial feeding and meandering.

$$
sin(\theta_0) = \frac{l}{d} \left(1 - \frac{f_0}{f} \right)
$$

From Skolnik, 1981 "Introduction to Radar Systems"

Elevation steering

■ Concept implementation of frequency beam steering via serial feeding and meandering.

$$
sin(\theta_0) = \frac{l}{d} \left(1 - \frac{f_0}{f} \right)
$$

From Skolnik, 1981 "Introduction to Radar Systems"

Elevation steering

Volume coverage pattern

Total frequency sweep

- 9.096 to 9.746 GHz
- Excursion of 650 MHz
- Beam axis and 3 dB aperture
	- 7 elevations (-10 to 10 deg)
	- \blacksquare with fixed tilt of 12 deg

Market potential

OPERA radar network

- Huge market potential for effective, sustainable and reliable solutions.
- OPERA radar network
	- 248 km average range
	- 202 operational radars
	- 184 Doppler
	- 48 Dual-pol
	- 8 X-band
	- **3 X-band Doppler dual-pol**

Market potential

OPERA radar network

Equivalent number of long-range and short-range radars for "blanket" coverage (assumed 150 km and 30 km range)

Market potential

Key success condition, when output products match long-range radars (Doppler, dual-pol, 3D scanning) data quality:

low-cost

(assumed 5M€ cost per S-band radar, about 80K€ is the unitary X-band limit cost)

OPERA radar network

Market potential

OPERA radar network

Applications

- Gap filling for long range radars
- \blacksquare Low troposphere sensing
- High resolution atmospheric hazard detection (urban security, flash floods, hail storms)
- Airport security, including landing path monitoring, avian hazard surveillance
- **Precision approach radar**

Power consumption

AESA chipsets power consumption (1% duty cycle)

Per panel and total MPFE power consumption

Cost estimate based on current listing

Overall cost estimate

Array of 64 MPFEs on RO4350B laminate COTS back-end electronics

Summary

A concept for low-cost weather monitoring

A new generation of low-cost integrated front-ends offering complete T/R functionalities on chip is available on the market, carrying a potential to trigger a sustainable development of dense X-band weather radar networks.

Summary

A concept for low-cost weather monitoring

Judicious redesign of mechanically rotated solutions complemented by novel enabling technologies might provide a cost-effective subset of capabilities comparable to AESA apertures within surveillanceoriented hydrology applications.

Thank you very much for your attention !!

