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Examples of Past Basic Research

• Raindrop evaporation (e.g., Kumjian and 
Ryzhkov 2010)
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• Size sorting (e.g., Kumjian and Ryzhkov 
2012)

Adapted from Kumjian and Ryzhkov (2010)Adapted from Kumjian and Ryzhkov (2012)

• Raindrop freezing (e.g., Kumjian et al. 
2012)

Adapted from Kumjian et al. (2012)

• Hail melting (e.g., Ryzhkov et al. 2013)

Adapted from Ryzhkov et al. (2013)

• Snow melting (e.g., Carlin et al. 2019)

Adapted from Carlin et al. (2019)

The goal of these studies was to 
understand observed (static) dual-
polarization radar signatures and their 
underlying microphysics.



Can this approach be adapted for nowcasting?

• Two principle additions:
• Evolution of environment in time in response to latent heating/cooling 

and attendant moistening 
• Sub-hourly information in-between model analyses

• Expansion from 1D to 3D along Lagrangian trajectories

• Initialization from polarimetric microphysical retrievals that vary 
in time and space
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1D Spectral Bin Model for Ice Microphysics
• Column model with explicit calculations of hydrometeor melting, 

refreezing, sublimation, and evaporation
• Environment evolves in response to these cooling/heating and 

moistening/drying processes
• Density effects of riming 
• Can be initialized at the top from polarimetric radar data and use 

model background or observed sounding as environment
• Particles then fall and evolve in their respective bins

• Coupled polarimetric radar forward operator (Ryzhkov et al. 2011) for 
Z, ZDR, Kdp, AH, and ADP using T-matrix calculations

• Various mixing formula options, etc.
• Processes still to add to 1D model:

• Explicit representation of riming
• Ice nucleation
• Drop breakup/coalesence
• Secondary ice production a la Deshmukh et al. (2022)?
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Precipitation-type classification
• Motivation:

• Severe winter weather impacts
• Below-beam effects
• Sparse observations
• FZRA v. RA indistinguishable on 

radar
• Existing model p-type algorithms 

often struggle

• Uses liquid water fraction from 
each particle size bin to determine 
precipitation type at the surface 
and aloft at every model grid point

• Expanded upon since original
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Adapted from Reeves et al. (2016)

Adapted from Reeves et al. (2014)



• How can polarimetric 
radar data help?

• Time- and space-
varying PSDs (ongoing)

• Identifying riming
• Polarimetric melting-

layer detection 
algorithm to correct 
model background error

• Garbage in  garbage 
out problem
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Precipitation-type classification

For more information: 
Ryzhkov, A. V. and J. Krause, 2022: New polarimetric radar 
algorithm for melting-layer detection and determination of its 
height. J. Atmos. Oceanic Tech., 39, 529-543.



Nowcasting start time of snow at surface
• Model initialized with time-

varying polarimetric 
retrievals from QVPs for 12 
cases of sublimating snow

• Compared when snow 
saturated the dry air and 
reached the surface in the 
model compared to 
observations

• Median bias was -18 
minutes out to a lead time 
of 6 h
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Adapted from Carlin et al. (2021)
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Nowcasting start time of snow at surface
Evolution of RHi profile for 08 Dec 2013

• Model background had 
erroneous pocket of dry 
air advect into area that 
prevented accurate 
prediction of snow’s 
arrival at surface

• 1D model + QVP was 
able to correctly predict 
moistening and start 
time

Adapted from Carlin et al. (2021)



Addition of aggregation to 1D model
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• Polarimetric retrievals work 
best in areas of strong 
anisotropic signals (e.g., the 
dendritic growth layer)

• Aggregation can mask 
polarimetric signatures

• Option: perform retrievals 
aloft, then evolve PSDs 
down to lower levels (e.g., 
into the melting layer)

• Recently added to 1D model
• Many uncertain parameters 
 optimization using 
Lagrangian profiles of 
aggregating snow as 
constraint….

Reproduction of RDQVP using time-varying polarimetric retrievals 
for 08 Dec 2013



Heavy snow nowcasting motivation
○ In order to make short-term 

predictions about how the 
surface precipitation rate 
will change, we look aloft.

○ Snow falls relatively slowly  
longer lead times!

• Kdp often high in regions of 
enhanced snowflake 
concentrations and saturation 
(e.g., Dunnavan et al. 2022) 
that leads to heavy snowfall 
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KDIX on 08 December 2013



Heavy snow nowcasting motivation

○ Motivated by results of 
Trömel et al. (2019) who 
correlated Kdp aloft with Z at 
the surface using VAD winds

○ Lead times can be ≥ 1 hour
○ Mean: 44 minutes
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Adapted from Trömel et al. (2019)

26 July 2022



Heavy snow nowcasting methodology
• Launch trajectories from -15°C level where Kdp exceeds 

0.2°/km
• Preferentially sampled based on Kdp values
• Ntraj ∝ Area exceeding Kdp threshold

• Snowflakes advected using with model winds or VAD using 
fallspeed sampled from [0.7, 1.1] m/s

• Validated against S(Z, Kdp) from Bukovčić et al. (2020)
• Compute “practically perfect forecast” (Hitchens et al. 2013) 

that takes discrete points  probabilistic map
• Goal is eventual operational algorithm
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50-minute lead timeDevelopment of heavy snow 
well-anticipated in multiple 

regions
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50-minute lead timeAdvection of existing heavy snow 
band also captured



26 July 2022  � jacob.carlin@noaa.gov 16

50-minute lead timeCessation of heavy snow is also 
well predicted!
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Quantitative verification
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Case 2

Case 1



• Downbursts present a nowcasting 
challenge

• Traditional radar-based metrics (e.g., 
descending Z cores, storm-top 
convergence) are not always reliable 
and can be hard to discern

• Recent evidence (e.g., Kuster et al. 
2021) descending Kdp cores to be a 
reliable downburst precursor

• Intensity: Within a given environment, 
larger Kdp correlated with more 
intense downbursts
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1D modeling of polarimetric signatures of downbursts

Adapted from Kuster et al. (2021)



• Operational sampling of downburst can be limited…
• Building combined 1D model of polarimetric downburst 

development
• Srivastava (1985; 1987) idealized downburst model
• Melting hail, drop shedding, drop breakup (Ryzhkov et al. 2013)
• Polarimetric radar forward operator (Ryzhkov et al. 2011, Kumjian et al. 

2018)

• Currently implementing latest parameterizations for e.g., 
melting graupel (Theis et al. 2022)

• Goal: Better understand precursor signatures and how they 
quantitatively relate to downburst forcing terms to improve 
nowcasting
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1D modeling of polarimetric signatures of downbursts



1D modeling of polarimetric signatures of downbursts
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Future work: Refreezing Studies
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• Preliminary dataset of PPIs, RHIs, and spectral polarimetric radar data 
from mobile radar during long-lasting ice pellet event in Oklahoma

• Exploring modeling this process (e.g., Tobin and Kumjian 2021) to 
see if spectral and overall signatures can be reproduced and 
nowcasting signatures can be identified

Columnar ice 
crystals seen 
in Kumjian et 
al. (2020)?

Refreezing beginning simultaneously for all size bins?



Summary

• The combination of spectral bin models and radar polarimetry 
can have synergistic benefits for nowcasting

• Particularly for snow

• More work remains on how to optimally operationalize these 
approaches

• Point-by-point microphysical retrievals
• Single-radar limitations
• Assumptions in Lagrangian trajectories
• Uncertainties in forward modeling of polarimetric variables
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Thank you for your attention!

Questions/Comments?
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