excursions:epfl_research_stay

Differences

This shows you the differences between two versions of the page.

Link to this comparison view

Both sides previous revision Previous revision
excursions:epfl_research_stay [2024/10/23 23:56] ayushexcursions:epfl_research_stay [2026/01/13 10:29] (current) kathrin
Line 63: Line 63:
 **References:** **References:**
  
-  * Billault-Roux, A. C., Ghiggi, G., Jaffeux, L., Martini, A., Viltard, N., and A. Berne, 2023: Dual-frequency spectral radar retrieval of snowfall microphysics: a physics-driven deep-learning approach. Atmospheric Measurement Techniques, 16(4), 911-940.+  * Billault-Roux, A. C., G. Ghiggi, L. Jaffeux, A. Martini, N. Viltard, and A. Berne, 2023: Dual-frequency spectral radar retrieval of snowfall microphysics: a physics-driven deep-learning approach. Atmospheric Measurement Techniques, 16(4), 911-940.
  
-  * Garrett, T. J., Fallgatter, C., Shkurko, K., and D. Howlett, 2012: Fallspeed measurement and high-resolution multi-angle photography of hydrometeors in freefall. Atmospheric Measurement Techniques Discussions, 5(4), 4827-4850.+  * Garrett, T. J., C. Fallgatter, K. Shkurko, and D. Howlett, 2012: Fallspeed measurement and high-resolution multi-angle photography of hydrometeors in freefall. Atmospheric Measurement Techniques Discussions, 5(4), 4827-4850.
  
-  * Hogan, R. J., Honeyager, R., Tyynelä, J., and S. Kneifel, 2017: Calculating the millimetre-wave scattering phase function of snowflakes using the self-similar Rayleigh–Gans Approximation. Quarterly Journal of the Royal Meteorological Society, 143(703), 834-844.+  * Hogan, R. J., R. Honeyager, J. Tyynelä, and S. Kneifel, 2017: Calculating the millimetre-wave scattering phase function of snowflakes using the self-similar Rayleigh–Gans Approximation. Quarterly Journal of the Royal Meteorological Society, 143(703), 834-844.
  
-  * Petäjä, T., O’Connor, E. J., Moisseev, D., Sinclair, V. A., Manninen, A. J., Väänänen, R., Lerber, A. v., Thornton, J. A., Nicoll, K., Petersen, W., Chandrasekar, V., Smith, J. N., Winkler, P. M., Krüger, O.Hakola, H.Timonen, H.Brus, D.Laurila, T.Asmi, E., Riekkola, M.-L., Mon, L., Massoli, P., Engelmann, R., Komppula, M., Wang, J., Kuang, C., Bäck, J., Virtanen, A., Levula, J., Ritsche, M., and N. Hickmon, 2016: BAECC: A field campaign to elucidate the impact of biogenic aerosols on clouds and climate. Bulletin of the American Meteorological Society, 97(10), 1909-1928.+  * Petäjä, T., E. J. O’Connor, D. Moisseev, V. A. Sinclair, A. J. Manninen, R. Väänänen, A. von Lerber, J. A. Thornton, K. Nicoll, W. Petersen, V. Chandrasekar, J. N. Smith, P. M: WinklerO. Krüger, H. Hakola, H. Timonen, D. Brus, T. Laurila, E. Asmi, M.-L. Riekkola, L. Mon, P. Massoli, R. Engelmann, M. Komppula, J. Wang, C. Kuang, J. Bäck, A. Virtanen, J. Levula, M. Ritsche, and N. Hickmon, 2016: BAECC: A field campaign to elucidate the impact of biogenic aerosols on clouds and climate. Bulletin of the American Meteorological Society, 97(10), 1909-1928.
  
-  * Von Terzi, L., Dias Neto, J.Ori, D.Myagkov, A., and S. Kneifel, 2022: Ice microphysical processes in the dendritic growth layer: a statistical analysis combining multi-frequency and polarimetric Doppler cloud radar observations. Atmospheric Chemistry and Physics, 22(17), 11795-11821.+  * von Terzi, L., J. Dias Neto, D. Ori, A. Myagkov, and S. Kneifel, 2022: Ice microphysical processes in the dendritic growth layer: a statistical analysis combining multi-frequency and polarimetric Doppler cloud radar observations. Atmospheric Chemistry and Physics, 22(17), 11795-11821.
  
 </WRAP> </WRAP>
  
  • excursions/epfl_research_stay.txt
  • Last modified: 2026/01/13 10:29
  • by kathrin