peer_reviewed_publications


Maahn, M., D. Moisseev, I. Steinke, N. Maherndl, and M. D. Shupe, 2024: Introducing the Video In Situ Snowfall Sensor (VISSS), Atmos. Meas. Tech., 17, 899–919, https://amt.copernicus.org/articles/17/899/2024/.

Teisseire, A., P. Seifert, A. Myagkov, J. Bühl, and M. Radenz, 2024: Determination of the vertical distribution of in-cloud particle shape using SLDR-mode 35 GHz scanning cloud radar, Atmos. Meas. Tech., 17, 999–1016, https://doi.org/10.5194/amt-17-999-2024.

Teisseire, A., T. Vogl, A-C. Billault-Roux, and P. Seifert, 2024: Attribution of riming and aggregation processes by application of the vertical distribution of particle shape (VDPS) and spectral retrieval techniques to cloud radar observations, Atmos. Meas. Tech., EGUsphere [preprint], https://doi.org/10.5194/egusphere-2024-2711.

Vogl, T., M. Radenz, F. Ramelli, R. Gierens, and H. Kalesse-Los, 2024: PEAKO and peakTree: Tools for detecting and interpreting peaks in cloud radar Doppler spectra – capabilities and limitations, submitted to Atmos. Meas. Tech.

Welss, J.-N., C. Siewert, and A. Seifert, 2024: Explicit habit-prediction in the Lagrangian super-particle ice microphysics model McSnow. Journal of Advances in Modeling Earth Systems, 16, e2023MS003805. https://doi.org/10.1029/2023MS003805.

Blanke, A., A. J. Heymsfield, M. Moser and S. Trömel, 2023: Evaluation of polarimetric ice microphysical retrievals with OLYMPEX campaign data. Atmos. Meas. Tech., 16(8), 2089–2106, https://doi.org/10.5194/amt-16-2089-2023.

Grzegorczyk, P., S. Yadav, F. Zanger, A. Theis, S. K. Mitra, S. Borrmann, and M. Szakáll, 2023: Fragmentation of ice particles: laboratory experiments on graupel-graupel and graupel-snowflake collisions, EGUsphere, https://acp.copernicus.org/articles/23/13505/2023/.

Hahn, V., R. Meerkötter, C. Voigt, S. Gisinger, D. Sauer, V. Catoire, V. Dreiling, H. Coe, C. Flamant, S. Kaufmann, J. Kleine, P. Knippertz, M. Moser, P. Rosenberg, H. Schlager, A. Schwarzenboeck, and J. Taylor, 2023: Pollution slightly enhances atmospheric cooling by low-level clouds in tropical west africa. Atmospheric Chemistry and Physics, 23(15), 8515–8530, https://doi.org/10.5194/acp-23-8515-2023.

Hohenegger, C., F. Ament, F. Beyrich, U. Löhnert, H. Rust, J. Bange, T. Böck, C. Böttcher, J. Boventer, F. Burgemeister, M. Clemens, C. Detring, I. Detring, N. Dewani, I. Bastak Duran, S. Fiedler, M. Göber, C. van Heerwaarden, B. Heusinkveld, B. Kirsch, D. Klocke, C. Knist, I. Lange, F. Lauermann, V. Lehmann, J. Lehmke, R. Leinweber, K. Lundgren, M. Masbou, M. Mauder, W. Mol, H. Nevermann, T. Nomokonova, E. Päschke, A. Platis, J. Reichardt, L. Rochette, M. Sakradzija, L. Schlemmer, J. Schmidli, N. Shokri, V. Sobottka, J. Speidel, J. Steinheuer, D. Turner, H. Vogelmann, C. Wedemeyer, E. Weide-Luiz, S. Wiesner, N. Wildmann, K. Wolz and T. Wetz., 2023: FESSTVaL: The Field Experiment on Submesoscale Spatio-Temporal Variability in Lindenberg. Bulletin of the American Meteorological Society, 104(10), https://doi.org/10.1175/BAMS-D-21-0330.1.

Köcher, G., T. Zinner, and C. Knote, 2023: Influence of cloud microphysics schemes on weather model predictions of heavy precipitation, Atmos. Chem. Phys., 23, 6255–6269, https://doi.org/10.5194/acp-23-6255-2023.

Maherndl, N., M. Maahn, F. Tridon, J. Leinonen, D. Ori and S. Kneifel, 2023: A riming-dependent parameterization of scattering by snowflakes using the self-similar Rayleigh–Gans approximation. Q J R Meteorol Soc., https://doi.org/10.1002/qj.4573.

Moser, M., C. Voigt, T. Jurkat-Witschas, V. Hahn, G. Mioche, O. Jourdan, R. Dupuy, C. Gourbeyre, A. Schwarzenboeck, J. Lucke, Y. Boose, M. Mech, S. Borrmann, A. Ehrlich, A. Herber, C. Lüpkes, and M. Wendisch, 2023: Microphysical and thermodynamic phase analyses of arctic low-level clouds measured above the sea ice and the open ocean in spring and summer. Atmospheric Chemistry and Physics, 23(13), 7257– 7280, https://doi.org/10.5194/acp-23-7257-2023.

Rizik, A., A. Battaglia, F. Tridon, F. E. Scarsi, A. Kötsche, H. Kalesse-Los, M. Maahn, A. Illingworth, 2023: Impact of Crosstalk on Reflectivity and Doppler Measurements for the WIVERN Polarization Diversity Doppler Radar, IEEE Transactions on Geoscience and Remote Sensing, https://doi.org/10.1109/tgrs.2023.3320287.

Trömel, S., U. Blahak, R. Evaristo, J. Mendrok, L. Neef, V. Pejcic, T. Scharbach, P. Shrestha, and C. Simmer, 2023: Fusion of radar polarimetry and atmospheric modeling. In V. N. Bringi, K. V. Mishra, & M. Thurai (Eds.), Advances in Weather Radar, Volume 2: Precipitation science, scattering and processing algorithms (pp. 293–344). IET The Institution of Engineering and Technology, ISBN-13: 978-1-83953-624-3, https://doi.org/10.1049/SBRA557G.

Welss, J.-N., C. Siewert, A. Seifert, 2023: Explicit habit-prediction in the Lagrangian super-particle ice microphysics model McSnow. ESS Open Archive. June 07, 2023, submitted version, https://doi.org/10.22541/essoar.168614461.18006193/v1.

Gergely, M., M. Schaper, M. Toussaint and M. Frech, 2022: Doppler spectra from DWD's operational C-band radar birdbath scan: sampling strategy, spectral postprocessing, and multimodal analysis for the retrieval of precipitation processes. Atmos. Meas. Tech., 15(24), 7315–7335, https://doi.org/10.5194/amt-15-7315-2022.

Karrer, M., J. Dias Neto, L. von Terzi and S. Kneifel, 2022: Melting Behavior of Rimed and Unrimed Snowflakes Investigated With Statistics of Triple-Frequency Doppler Radar Observations. J. Geophys. Res., 127(9), 1–24, https://doi.org/10.1029/2021JD035907.

Köcher, G., T. Zinner, C. Knote, E. Tetoni, F. Ewald and M. Hagen, 2022: Evaluation of convective cloud microphysics in numerical weather prediction models with dual-wavelength polarimetric radar observations: methods and examples. Atmos. Meas. Tech., 15(4), 1033–1054, https://doi.org/10.5194/amt-15-1033-2022.

Lucke, J., T. Jurkat-Witschas, R. Heller, V. Hahn, M. Hamman, W. Breitfuss, V. R. Bora, M. Moser, and C. Voigt, 2022: Icing wind tunnel measurements of supercooled large droplets using the 12 mm total water content cone of the nevzorov probe. Atmospheric Measurement Techniques, 15(24), 7375–7394, https://doi.org/10.5194/amt-15-7375-2022.

Mech, M., A. Ehrlich, A. Herber, C. Lüpkes, M. Wendisch, S. Becker, Y. Boose, D. Chechin, S. Crewell, R. Dupuy, C. Gourbeyre, J. Hartmann, E. Jäkel, O. Jourdan, L.-L. Kliesch, M. Klingebiel, B. S. Kulla, G. Mioche, M. Moser , . . . C. Voigt , 2022: MOSAiC-ACA and AFLUX - arctic airborne campaigns characterizing the exit area of MOSAiC. Scientific Data, 9(1), https://doi.org/10.1038/s41597-022-01900-7.

Myagkov, A. and D. Ori, 2022: Analytic characterization of random errors in spectral dual-polarized cloud radar observations. Atmos Meas. Tech. 15(5), 1333–1354, https://doi.org/10.5194/amt-15-1333-2022.

Pejcic, V., J. Soderholm, K. Mühlbauer, V. Louf and S. Trömel, 2022a: Five years calibrated observations from the University of Bonn X-band weather radar (BoXPol). Sci. Data, 9(551), https://doi.org/10.1038/s41597-022-01656-0.

Pejcic, V., K. Mühlbauer and S. Trömel, 2022b: A new Dual-Frequency-based Hydrometeor Classification Approach for the Global Precipitation Measurements Core-Satellite. 23rd International Radar Symposium (IRS), Gdansk, Poland, 426–430, Extended Abstract, https://doi.org/10.23919/IRS54158.2022.9905054.

Schimmel, W., H. Kalesse-Los, M. Maahn, T. Vogl, A. Foth, P. Saavedra Garfias and P. Seifert, 2022: Identifying cloud droplets beyond lidar attenuation from vertically pointing cloud radar observations using artificial neural networks. Atmos. Meas. Tech., 15(18), 5343–5366, https://doi.org/10.5194/amt-15-5343-2022.

Shrestha P., J. Mendrok, V. Pejcic, S. Trömel, U. Blahak and J.T. Carlin, 2022a: Evaluation of the COSMO model (v5.1) in polarimetric radar space – impact of uncertainties in model microphysics, retrievals and forward operators. Geoscientific Model Development, 15(1), 291–313, https://doi.org/10.5194/gmd-15-291-2022.

Shrestha, P., J. Mendrok and D. Brunner, 2022b: Aerosol characteristics and polarimetric signatures for a deep convective storm over north-western part of Europe – modeling and observations. Atmos. Chem. Phys., 22(21), 14095–14117, https://doi.org/10.5194/acp-22-14095-2022.

Shrestha, P., S. Trömel, R. Evaristo and C. Simmer, 2022c: Evaluation of modelled summertime convective storms using polarimetric radar observations. Atmos. Chem. Phys., 22(11), 7593–7618, https://doi.org/10.5194/acp-22-7593-2022.

Steinke, I, A. Kötsche, M. Maahn, H. Kalesse-Los, H., 2022: Studying Orography-Influenced Riming and Secondary Ice Production and Their Effects on Precipitation Rates Using Radar Polarimetry and Radar Doppler Spectra. In AGU Fall Meeting Abstracts 2022, H22F-07, 2022AGUFM.H22F.07S.

Tetoni, E., Ewald, F., Hagen, M., Köcher, G., Zinner, T. and S. Groß, 2022: Retrievals of ice microphysical properties using dual-wavelength polarimetric radar observations during stratiform precipitation events. Atmos. Meas. Tech., 15(13), 3969–3999, https://doi.org/10.5194/amt-15-3969-2022.

Vogl T., M. Maahn, S. Kneifel, W. Schimmel, D. Moisseev and H. Kalesse-Los, 2022: Using artificial neural networks to predict riming from Doppler cloud radar observations. Atmos. Meas. Tech., 15(4), 365–381, https://doi.org/10.5194/amt-15-365-2022.

von Terzi, L., J. Dias Neto, D. Ori, A. Myagkov and S. Kneifel, 2022: Ice microphysical processes in the dendritic growth layer: A statistical analysis combining multi-frequency and polarimetric Doppler cloud radar observations. Atmos. Chem. Phys., 22(17), 11795–11821, https://doi.org/10.5194/acp-22-11795-2022.


Feng, Y., T. Janjic, Y. Zeng, A. Seifert and J. Min, 2021: Representing Microphysical Uncertainty in Convective- scale Data Assimilation using Additive Noise. Journal of Advances in Modeling Earth Systems, 13(10), e2021MS002606, https://doi.org/10.1029/2021MS002606.

Janjic, T. and Y. Zeng, 2021: Weakly constrained LETKF for estimation of hydrometeor variables in convective-scale data assimilation. Geophysical Research Letters, 48(24), e2021GL094962, https://doi.org/10.1029/2021GL094962.

Karrer, M., A. Seifert, D. Ori and S. Kneifel, 2021: Improving the Representation of Aggregation in a Two-moment Microphysical Scheme with Statistics of Multi-frequency Doppler Radar Observations. Atmos. Chem. Phys., 21(22), 17133–17166, https://doi.org/10.5194/acp-21-17133-2021.

Kneifel, S., B. Pospichal, L. von Terzi, T. Zinner, M. Puh, M. Hagen, B. Mayer, U. Löhnert and S. Crewell, 2022: Long-term cloud and precipitation statistics observed with remote sensors at the high-altitude Environmental Research Station Schneefernerhaus in the German Alps. Meteorol. Z. (Contrib. Atm. Sci.), 31(1), 69–86, https://doi.org/10.1127/metz/2021/1099.

Mróz, K., A. Battaglia, S. Kneifel, L. von Terzi, M. Karrer and D. Ori, 2021: Linking rain into ice microphysics across the melting layer in stratiform rain a closure study. Atmos. Meas. Tech., 14(1), 511–529, https://doi.org/10.5194/amt-14-511-2021.

Ori, D., L. von Terzi, M. Karrer and S. Kneifel, 2021: snowScatt 1.0: Consistent model of microphysical and scattering properties of rimed and unrimed snowflakes based on the self-similar Rayleigh-Gans Approximation. Geosci. Model Dev., 14(3), 1511–1531, https://doi.org/10.5194/gmd-14-1511-2021.

Pejcic, V., C. Simmer and S. Trömel, 2021: Polarimetric radar-based methods for evaluation of hydrometeor mixtures in numerical weather prediction models. 21st International Radar Symposium (IRS), Berlin, Germany, Extended Abstract, https://ieeexplore.ieee.org/document/9466201

Radenz, M., J. Bühl, P. Seifert, H. Baars, R. Engelmann, B. Barja González, R.E. Mamouri, F. Zamorano and A. Ansmann, 2021: Hemispheric contrasts in ice formation in stratiform mixed-phase clouds: Disentangling the role of aerosol and dynamics with ground-based remote sensing. Atmos. Chem. Phys., 21(23), 17969–17994. https://doi.org/10.5194/acp-21-17969-2021.

Shrestha, P., 2021: Clouds and vegetation modulate shallow groundwater table depth. Journal of Hydrometeorology, 22(4), 753–763, https://doi.org/10.1175/JHM-D-20-0171.s1.

Trömel, S., C. Simmer, U. Blahak, A. Blanke, S. Doktorowski, F. Ewald, M. Frech, M. Gergely, M. Hagen, T. Janjic, H. Kalesse-Los, S. Kneifel, C. Knote, G. Köcher, J. Mendrok, M. Moser, K. Mühlbauer, A. Myagkov, V. Pejcic, P. Seifert, P. Shrestha, A. Teisseire, L. von Terzi, E. Tetoni, T. Vogl, C. Voigt, Y. Zeng, T. Zinner and J. Quaas, 2021: Overview: Fusion of Radar Polarimetry and Numerical Atmospheric Modelling Towards an Improved Understanding of Cloud andPrecipitation Processes. Atmos. Chem. Phys., 21(23), 17291-17314, https://doi.org/10.5194/acp-21-17291-2021.

Zeng, Y., T. Janjic, A. de Lozar, C. A. Welzbacher, U. Blahak and A. Seifert, 2021a: Assimilating radar radial wind and reflectivity data in an idealized setup of the COSMO-KENDA system. Atmospheric Research, 249, 105282, https://doi.org/10.1016/j.atmosres.2020.105282.

Zeng, Y., A. de Lozar, T. Janjic and A. Seifert, 2021b: Applying a new integrated mass-flux adjustment filter in rapid update cycling of convective-scale data assimilation for the COSMO model (v5.07). Geosci. Model Dev., 14(3), 1295–1307, https://doi.org/10.5194/gmd-14-1295-2021.

Zeng, Y., T. Janjic, Y. Feng, U. Blahak, A. de Lozar, E. Bauernschubert, K. Stephan and J. Min, 2021c: Interpreting estimated Observation Error Statistics of Weather Radar Measurements using the ICON-LAM-KENDA System. Atmos. Meas. Tech., 14(8), 5735–5756, https://amt.copernicus.org/articles/14/5735/2021/


Miscellaneous 2021

Shrestha, P., 2021: High resolution hydrological simulations over Bonn Radar Domain. CRC/TR32 Database (TR32DB). Available from: https://dx.doi.org/10.5880/TR32DB.40 (Accessed 22 April 2021).

Xie, X., P. Shrestha, J. Mendrok, J. Carlin, S. Trömel and U. Blahak, 2021: Bonn Polarimetric Radar forward Operator (B-PRO). CRC/TR32 Database (TR32DB). Available from: https://www.tr32db.uni-koeln.de/search/view.php?doiID=115 (Accessed 8 April 2021).


Bringi, V., A. Seifert, W. Wu, M. Thurai, G. J. Huang, and C. Siewert, 2020: Hurricane Dorian Outer Rain Band Observations and 1D Particle Model Simulations. A Case Study. Atmosphere, 11(8), 879, https://doi.org/10.3390/atmos11080879.

Mróz, K., A. Battaglia, S. Kneifel, L. P. D’Adderio, and J. Dias Neto, 2020: Triple-frequency Doppler retrieval of characteristic raindrop size. Earth and Space Science, 7(3), e2019EA000789, https://doi.org/10.1029/2019EA000789.

Myagkov, A., S. Kneifel, and T. Rose, 2020: Evaluation of the reflectivity calibration of W-band radars based on observations in rain. Atmos. Meas. Tech., 13(11), 5799–5825, https://doi.org/10.5194/amt-13-5799-2020.

Ori, D., V. Schemann, M. Karrer, J. Dias Neto, L. von Terzi, A. Seifert, and S. Kneifel, 2020: Evaluation of ice particle growth in ICON using statistics of multi-frequency Doppler cloud radar observations. Q. J. Roy. Meteor. Soc., 146(733), 3830–3849, https://doi.org/10.1002/qj.3875.

Pejcic, V., P. Saavedra Garfias, K. Mühlbauer, S. Trömel, and C. Simmer, 2020: Comparison between precipitation estimates of ground-based weather radar composites and GPM’s DPR rainfall product over Germany. Meteorol. Z. (Contrib. Atm. Sci.), 29(6), 451–466, http://doi.org/10.1127/metz/2020/1039.

Quaas, J., A. Arola, B. Cairns, M. Christensen, H. Deneke, A. M. L. Ekman, G. Feingold, A. Fridlind, E. Gryspeerdt, O. Hasekamp, Z. Li, A. Lipponen, P.-L. Ma, J. Mülmenstädt, A. Nenes, J. E. Penner, D. Rosenfeld, R. Schrödner, K. Sinclair, O. Sourdeval, P. Stier, M. Tesche, B. van Diedenhoven, M. Wendisch, 2020: Constraining the Twomey effect from satellite observations: is-sues and perspectives. Atmos. Chem. Phys., 20(23), 15079–15099, https://doi.org/10.5194/acp-20-15079-2020.

Shrestha, P., and C. Simmer, 2020: Modeled Land Atmosphere Coupling Response to Soil Moisture Changes with Different Generations of Land Surface Models. Water, 12(1), 46, https://www.mdpi.com/2073-4441/12/1/46.

Turso, S., C. G. Salzburg, M. Vizcarro, and T. Bertuch, 2020: A Novel Antenna Concept for Weather Applications Based on a Cylindrical Parabolic Reflector. 2020 IEEE Radar Conference (RadarConf20), 21 September - 25 September 2020, https://doi.org/10.1109/RadarConf2043947.2020.9266385

Zeng, Y., T. Janjic, A. de Lozar, S. Rasp, U. Blahak, A. Seifert, and G. C. Craig, 2020: Comparison of methods accounting for subgrid-scale model error in convective-scale data assimilation. Mon. Wea. Rev., 148(6), 2457–2477, https://doi.org/10.1175/MWR-D-19-0064.1


Vizcarro M., S. Turso, C. G. Salzburg, and T. Bertuch, 2019: A dual-polarized X-band patch antenna sub-array with low cross-polarization for weather radar applications. 20th International Radar Symposium (IRS), 26 June - 28 June 2019, Ulm, Germany, https://doi.org/10.23919/IRS.2019.8768175

Zeng, Y., T. Janjic, M. Sommer, A. de Lozar, U. Blahak, and A. Seifert, 2019: Representation of model error in convective-scale data assimilation: Additive noise based on model truncation error. J. Adv. Model. Earth Sys., 11(3), 752–770, https://doi.org/10.1029/2018MS001546.

Trömel S., J. Quaas, S. Crewell, A. Bott, and C. Simmer, 2018: Polarimetric Radar Observations Meet Atmospheric Modelling. Proceedings of the 19th International Radar Symposium (IRS), 20-22 June 2018, Bonn, https://doi.org/10.23919/IRS.2018.8448121



  • peer_reviewed_publications.txt
  • Last modified: 2024/10/15 06:33
  • by kathrin