excursions:mainz_vonterzi_kneifel

Differences

This shows you the differences between two versions of the page.

Link to this comparison view

Both sides previous revision Previous revision
excursions:mainz_vonterzi_kneifel [2026/01/22 20:17] ayushexcursions:mainz_vonterzi_kneifel [2026/01/22 20:49] (current) ayush
Line 8: Line 8:
     .dw-content img {     .dw-content img {
         border-radius: 6px;         border-radius: 6px;
 +    }
 +    .image-container {
 +      --base-height: 400px;
 +
 +      display: flex;
 +      justify-content: center;
 +      align-items: flex-start;
 +      gap: clamp(1rem, 3vw, 2rem);
 +      max-width: min(85%, 1200px);
 +      margin: 2rem auto;
 +    }
 +
 +    .image-container img {
 +      height: clamp(calc(var(--base-height) * 0.6), 35vh, var(--base-height));
 +      width: auto;
 +      flex-shrink: 1;
 +      min-width: 0;
 +      object-fit: contain;
 +      display: block;
 +    }
 +
 +    @media (max-width: 768px) {
 +      .image-container {
 +        flex-direction: column;
 +        align-items: center;
 +      }
     }     }
 </style> </style>
 </html> </html>
 +
  
 <WRAP tablewidth 80% center> <WRAP tablewidth 80% center>
Line 29: Line 56:
 ==== 1. Introduction ==== ==== 1. Introduction ====
  
-The growth of ice crystals under fixed ambient temperature and relative humidity conditions is well established. Libbrecht (2017) summarizes these growth behaviors in the ice crystal habit diagramFor example, at temperatures between $-10^\circ\,\text{C}$ and $-22^\circ\,\text{C}$, ice crystals predominantly form plate-like structures. At low supersaturations with respect to ice, simple plates develop, while increasing supersaturation promotes branchingleading to dendritic structures. At warmer temperatures, between $-4^\circ\,\text{C}$ and $-10^\circ\,\text{C}$, columnar growth becomes dominant: low supersaturation produces solid columns, higher supersaturation yields hollow columns, and very high supersaturation results in needle-like crystals.+Ice crystal growth under fixed temperature and humidity is well described by the habit diagram (Libbrecht2017). Plate-like crystals form between $-10^\circ\,\text{C}$ and $-22^\circ\,\text{C}$, evolving from simple plates to dendrites with increasing ice supersaturation, while columnar habits dominate at warmer temperatures ($-4^\circ\,\text{C}$ to $-10^\circ\,\text{C}$)ranging from solid columns to needles at very high supersaturation.
 \\ \\ \\ \\
-In the atmosphere, however, ice particles do not grow under constant conditions. As they sediment toward the ground, they pass through multiple growth regimes. The transition from columnar to plate-like growth, resulting in capped columnsis well documented (e.g., Libbrecht 2017 and references therein). In contrast, the inverse process—when a plate enters the columnar growth regime—is less well understood. Pasquier et al. (2023) observed complex particles where plate-like structures form on the six corners of an initial plate. +In the atmosphere, sedimenting ice particles experience changing growth regimes. While the transition from columnar to plate-like growth (capped columnsis well documented, the reverse transition remains poorly understood. No studies have examined dendrites entering the needle growth regime, despite the importance of dendrites for aggregation and secondary ice production (e.g., von Terzi et al. (2022)).
-\\ \\ +
-To date, to the best of our knowledge, no studies have investigated the growth of a dendrite that subsequently enters the needle growth regime. It remains unclear how needle structures develop on a pre-existing dendrite. This uncertainty poses challenges for models that incorporate habit-dependent depositional growth (for example, the 1D super particle model McSnow used in the PROM project FRAGILE), especially given that dendrites play a crucial role in atmospheric processes such as aggregation and secondary ice production (e.g., von Terzi et al.2022)+
-\\ \\ +
-Understanding how a dendrite evolves as it sediments through the needle growth regime is therefore essential for improving our knowledge of these processes. During our research stay at the cold chamber of the University of Mainz, we investigated the growth behavior of dendritic crystals subjected to needle growth conditions.+
 \\ \\ \\ \\
 +Here, we investigate the evolution of dendritic crystals exposed to needle growth conditions using experiments conducted in the cold chamber at the Johannes Gutenberg University of Mainz.
  
 ==== 2. Experimental setup ==== ==== 2. Experimental setup ====
  
-The experiments were conducted over the course of one week in the cold chamber at the University of Mainz. Ice particles were grown above an aquarium containing approximately a 1 cm high liquid water layer. The water was maintained at a temperature slightly above freezing using a heating mat placed beneath the aquariumWater vapor evaporating from the surface provided the necessary humidity for ice crystal growth above the water.+Experiments were conducted over one week in the cold chamber at the University of Mainz. Ice crystals were grown above an aquarium containing $\sim 1\, \text{cm}$ of liquid watermaintained slightly above $0^\circ\,\text{C}$ using a heating mat. Evaporation from the water surface provided the humidity required for crystal growth.
 \\ \\ \\ \\
-To better control the vapor flow, a styrofoam lid with a small central opening was positioned over the aquarium. This configuration channelled the rising water vapor through the opening, creating a localized region suitable for controlled crystal growth. Ice crystals formed within this opening on a 100 μm nylon string. +styrofoam lid with a small central opening was placed over the aquarium to channel the rising vapor, creating a localized growth region where ice crystals formed on a 100 μm nylon string. Temperature and relative humidity were continuously measured at the height of the string. A schematic of the setup is shown in Figure 1.
-\\ \\ +
-The temperature and relative humidity were continuously monitored at the same height as the nylon string to ensure accurate characterization of the growth environment. A schematic of the experimental setup is shown in Figure 1.+
 \\ \\ \\ \\
 {{ excursions:exc_mainz_vonterzi_kneifel_1.png?direct&900&nolink }} \\ {{ excursions:exc_mainz_vonterzi_kneifel_1.png?direct&900&nolink }} \\
Line 52: Line 74:
 ==== 3. Experiments ==== ==== 3. Experiments ====
  
-=== 3.1. The growth of dendritic structures === +=== 3.1. Placing a dendritic particle into the needle growth regime ===
- +
-<html> +
-<style> +
-.image-container { +
-  --base-height: 400px; +
- +
-  display: flex; +
-  justify-content: center; +
-  align-items: flex-start; +
-  gap: clamp(1rem, 3vw, 2rem); +
-  max-width: min(85%, 1200px); +
-  margin: 2rem auto; +
-+
- +
-.image-container img { +
-  height: clamp(calc(var(--base-height) * 0.6), 35vh, var(--base-height)); +
-  width: auto; +
-  flex-shrink: 1; +
-  min-width: 0; +
-  object-fit: contain; +
-  display: block; +
-+
- +
-@media (max-width: 768px) { +
-  .image-container { +
-    flex-direction: column; +
-    align-items: center; +
-  } +
-+
-</style> +
- +
-<div class="image-container"> +
-  <img src="https://www2.meteo.uni-bonn.de/spp2115/lib/exe/fetch.php?media=excursions:exc_mainz_vonterzi_kneifel_2.png" alt="Measurement setup"> +
-  <img src="https://www2.meteo.uni-bonn.de/spp2115/lib/exe/fetch.php?media=excursions:exc_mainz_vonterzi_kneifel_3.png" alt="Dendritic structures closeup"> +
-</div> +
-</html> +
-<TEXT align="center">**Figure 2:** Example of the measurement setup (left) and a close up picture of dendritic structures growing on the nylon string (right).</TEXT> +
-\\ \\ +
-Dendritic structures were observed to grow rapidly at temperatures colder than $-10^\circ\,\text{C}$ on various surfaces, provided that the supersaturation with respect to ice exceeded approximately 20%. Even at warmer temperatures, above $-10^\circ\,\text{C}$, branched morphologies appeared under high supersaturation conditions, consistent with the findings of Libbrecht (2017). +
-\\ \\ +
-During the experiments, it became evident that producing a single isolated crystal was challenging. Therefore, we adopted an alternative approach in which dendritic branches were allowed to grow directly on the nylon string. +
-\\ \\ +
- +
-=== 3.2. Placing a dendritic particle into the needle growth regime === +
- +
-A total of 13 experiments were conducted in which dendritic structures were first grown on the nylon string at temperatures between $-12^\circ\,\text{C}$ and $-17^\circ\,\text{C}$. After initial growth, the cold chamber temperature was gradually increased until $-7^\circ\,\text{C}$ was reached above the aquarium, corresponding to the needle growth regime. Each experiment was recorded on video, and following growth at $-7^\circ\,\text{C}$, the particles were examined under a microscope. The videos are available here: [[http://leonie.von-terzi.de/research/fun_snow/]]. The results from Experiments 4 and 8 are presented here as representative examples. +
-\\ \\ +
- +
-<WRAP tablewidth 90% center> /* Begin subindent wrap */ +
-** Experiment 4 ** +
- +
-Dendritic structures were grown at temperatures between $-12^\circ\,\text{C}$ and $-17^\circ\,\text{C}$ for approximately 20 minutes to produce large, well-developed dendrites. The chamber was then slowly warmed, reaching the needle growth regime (around $-10^\circ\,\text{C}$) after approximately 10 minutes. The particles were subsequently maintained in this regime for 20 minutes to observe further development. +
-\\ \\ +
-Figure 3 shows the dendritic particles at $-15^\circ\,\text{C}$ and at $-7^\circ\,\text{C}$. Upon entering the needle regime, the dendrites appeared to become denser and more compact, with the individual branches becoming less distinct. The overall structure appeared more clumped. +
-\\ \\ +
- +
-** Experiment 8 **+
  
-Following the same procedure as in Experiment 4, dendrites were initially grown at $-15^\circ\,\text{C}$ for approximately 20 minutesafter which the temperature was gradually increased, reaching the needle growth regime after about 10 minutesThe crystals were then held under these conditions for an additional 20 minutes.+Thirteen experiments were performed in which dendritic ice crystals were grown on a nylon string at $-12^\circ\,\text{C}$ to $-17^\circ\,\text{C}$ and then gradually warmed into the needle growth regime ($-7^\circ\,\text{C}$)Crystal growth was recorded and followed by microscopic analysis (videos: http://leonie.von-terzi.de/research/fun_snow/). Experiments 4 and 8 are shown as representative cases.
 \\ \\ \\ \\
-A similar loss of distinct dendritic features was observed. The particles became more compact, and the branch structure less pronouncedFigure 4 presents microscope images of the dendrites taken at $-12^\circ\,\text{C}$, prior to warming, and again after 20 minutes of growth at $-7^\circ\,\text{C}$. These images show the formation of columnar structures growing on the existing dendritic branches. The added columnar growth appears to fill the space between branches, resulting in denser, clumpier overall morphology.+In both experiments, dendrites grown for ~20 min became noticeably denser and more compact after 20 min in the needle regimeDistinct dendritic branches blurred, and columnar growth developed on existing branches, filling inter-branch space and producing clumped morphology (Fig. 3 and 4).
  
 <html> <html>
Line 121: Line 86:
 </div> </div>
 </html> </html>
-<TEXT align="center">**Figure 3:** Dendritic structures growing. First panel: dendritic structures at $-15^\circ\,\text{C}$. Second panel: dendritic structures after 20 minutes of growth time at $-7^\circ\,\text{C}$.</TEXT>+/* <TEXT align="center">**Figure 3:** Dendritic structures growing. First panel: dendritic structures at $-15^\circ\,\text{C}$. Second panel: dendritic structures after 20 minutes of growth time at $-7^\circ\,\text{C}$.</TEXT> */ 
 +<WRAP tablewidth 60% center> 
 +**Figure 3:** Dendritic structures growing. First panel: dendritic structures at $-15^\circ\,\text{C}$. Second panel: dendritic structures after 20 minutes of growth time at $-7^\circ\,\text{C}$. 
 +</WRAP>
 \\ \\ \\ \\
 <html> <html>
 <div class="image-container"> <div class="image-container">
 +  <img src="https://www2.meteo.uni-bonn.de/spp2115/lib/exe/fetch.php?media=excursions:exc_mainz_vonterzi_kneifel_7.png" alt="-7° C">
   <img src="https://www2.meteo.uni-bonn.de/spp2115/lib/exe/fetch.php?media=excursions:exc_mainz_vonterzi_kneifel_6.png" alt="-12° C">   <img src="https://www2.meteo.uni-bonn.de/spp2115/lib/exe/fetch.php?media=excursions:exc_mainz_vonterzi_kneifel_6.png" alt="-12° C">
-  <img src="https://www2.meteo.uni-bonn.de/spp2115/lib/exe/fetch.php?media=excursions:exc_mainz_vonterzi_kneifel_7.png" alt="-7° C"> 
-  <img src="https://www2.meteo.uni-bonn.de/spp2115/lib/exe/fetch.php?media=excursions:exc_mainz_vonterzi_kneifel_8.png" alt="-7° C"> 
 </div> </div>
 </html> </html>
-<TEXT align="center">**Figure 4:** Microscopic images of the dendritic structures which have grown at $-12^\circ\,\text{C}$ (first panel) and were brought to $-7^\circ\,\text{C}$ (second and third panel). As an example, columnar structures are marked with a red circle.</TEXT>+/* <TEXT align="center">**Figure 4:** Microscopic images of the dendritic structures which have grown at $-12^\circ\,\text{C}$ (first panel) and were brought to $-7^\circ\,\text{C}$ (second panel). As an example, columnar structures are marked with a red circle.</TEXT> */ 
 + 
 +<WRAP tablewidth 60% center> 
 +**Figure 4:** Microscopic images of the dendritic structures which have grown at $-12^\circ\,\text{C}$ (first panel) and were brought to $-7^\circ\,\text{C}$ (second panel). As an example, columnar structures are marked with a red circle. 
 +</WRAP>
 \\ \\ \\ \\
  
-</WRAP> /* Close subindent wrap */ 
  
-=== 3.Sequential Growth at $-15^\circ\,\text{C}$, $-7^\circ\,\text{C}$, and $-15^\circ\,\text{C}$ === + 
-In the 14th experiment, a dendritic crystal was first grown at $-15^\circ\,\text{C}$. The chamber temperature was then increased to $-7^\circ\,\text{C}$, allowing needle-like structures to develop on the dendrite. Subsequently, the particle was carefully transferred onto tweezers, and close-up images were taken as the chamber was cooled back down to $-15^\circ\,\text{C}$.+=== 3.2. Sequential Growth at $-15^\circ\,\text{C}$, $-7^\circ\,\text{C}$, and $-15^\circ\,\text{C}$ === 
 + 
 +In Experiment 14, a dendritic crystal was grown at $-15^\circ\,\text{C}$then warmed to $-7^\circ\,\text{C}$ to induce needle growth, and finally cooled back to $-15^\circ\,\text{C}$ for further growth. The particle was transferred to tweezers for close-up imaging during the final phase.
 \\ \\ \\ \\
-Figure 5 shows the particle at the end of the experiment, following the second growth phase at $-15^\circ\,\text{C}$. Remarkablythe overall dendritic framework remained largely intact. Needle-like extensions were visible, with slightly broadened tips indicating continued deposition. +As shown in Figure 5the dendritic structure remained largely intact after the second $-15^\circ\,\text{C}$ phasewith needle-like extensions exhibiting slightly broadened tips. Close-up images (Fig. 6) reveal that needles formed along the dendritic branches at $-7^\circ\,\text{C}$ and subsequently developed plate-like caps upon cooling, resulting in capped needles.
-\\ \\ +
-However, close-up images (Figure 6) revealed the detailed evolution of the structure: during the $-7^\circ\,\text{C}$ phase, needle-like “fingers” had formed along the dendritic branches. As the temperature decreased again to $-15^\circ\,\text{C}$plate-like structures began to grow at the tips of these needles, resulting in capped needles.+
 \\ \\ \\ \\
 {{ excursions:exc_mainz_vonterzi_kneifel_9.png?direct&500&nolink }} \\ {{ excursions:exc_mainz_vonterzi_kneifel_9.png?direct&500&nolink }} \\
-<TEXT align="center">**Figure 5:** Picture of the dendritic structure which was first grown at $-15^\circ\,\text{C}$, then brought to $-7^\circ\,\text{C}$ and finally back to $-15^\circ\,\text{C}$.</TEXT>+/* <TEXT align="center">**Figure 5:** Picture of the dendritic structure which was first grown at $-15^\circ\,\text{C}$, then brought to $-7^\circ\,\text{C}$ and finally back to $-15^\circ\,\text{C}$.</TEXT> */ 
 + 
 +<WRAP tablewidth 60% center> 
 +**Figure 5:** Picture of the dendritic structure which was first grown at $-15^\circ\,\text{C}$, then brought to $-7^\circ\,\text{C}$ and finally back to $-15^\circ\,\text{C}$. 
 +</WRAP>
 \\ \\ \\ \\
 <html> <html>
Line 151: Line 125:
 </div> </div>
 </html> </html>
-<TEXT align="center">**Figure 6:** Needle like structures on the dendrite. First panel: at $-7^\circ\,\text{C}$, second panel after 10 minutes of growth time at $-15^\circ\,\text{C}$. The plate-like caps at the tips have been enclosed by circles.</TEXT>+/* <TEXT align="center">**Figure 6:** Needle like structures on the dendrite. First panel: at $-7^\circ\,\text{C}$, second panel after 10 minutes of growth time at $-15^\circ\,\text{C}$. The plate-like caps at the tips have been enclosed by circles.</TEXT> */
  
 +<WRAP tablewidth 60% center>
 +**Figure 6:** Needle like structures on the dendrite. First panel: at $-7^\circ\,\text{C}$, second panel after 10 minutes of growth time at $-15^\circ\,\text{C}$. The plate-like caps at the tips have been enclosed by circles.
 +</WRAP>
 +\\ \\
  
 ==== 4. Conclusions ==== ==== 4. Conclusions ====
  
-The experiments have shown that when a dendrite falls into the needle growth regime, columnar particles start to grow at each branch of the dendritethereby effectively filling in the space between the arms. This effect probably increases the density of the particleand in extreme cases could change the appearance of the dendriteAfter these experiments, the question arises, if this fill-in effect could also happen for aggregates. We suspect that the frequent observations of no distinct monomers inside aggregates collected at the ground might be partially explained by our results of "monomer metamorphosis" when growing in different temperature regimes. More important, the habit metamorphosis might also explain the too low densities predicted by aggregation models, such as Leinonen and Moisseev 2015and measured aggregates at the ground.+The experiments show that when a dendrite enters the needle growth regime, columnar growth develops on each dendritic branch, progressively filling the space between arms. This process likely increases particle density and, in extreme cases, alters the dendritic appearance, which may explain the rarity of pristine dendrites observed at the groundThese findings raise the question of whether a similar fill-in mechanism occurs for aggregates and whether it could explain density discrepancies between aggregation models (e.g., Leinonen and Moisseev (2015)) and observations. Further studies with improved control of temperature and humidity are needed.
 \\ \\ \\ \\
-Further laboratory studies on this topic should be undertaken, with a focus on precise control of the temperature and humidity as well as mass and size measurements of the grown crystals. +All growth videos are available at: [[http://leonie.von-terzi.de/research/fun_snow/]].
-\\ \\ +
-All videos of the growth of ice particles can be found here: [[http://leonie.von-terzi.de/research/fun_snow/]].+
 </WRAP> </WRAP>
- 
-==== Acknowledgements: ==== 
-We are grateful to our partners in the FRAGILE project for supporting these growth experiments. In particular we want to thank Miklós Szakall, Subir Mitra, Sudha Yadav, and Martanda Gautam from the University of Mainz for their great support during the experiments.  
 \\ \\ \\ \\
  
  • excursions/mainz_vonterzi_kneifel.txt
  • Last modified: 2026/01/22 20:49
  • by ayush